1、定义不同
解,是数学上的“解”,使得方程中等号两边相等的未知数的值叫做方程的解。
所谓方程的根是使方程左、右两边相等的未知数的取值。
2、一元二次方程中不同
一元二次方程根和解不同,根可以是重根,而解一定是不同的,一元二次方程如果有2个不同根,又称有2个不同解。
3、类型不同
解:不是所有的方程都有解,或者只有唯一解。有一些方程在实数的范围内没有解,称为无解方程;有一些方程有唯一的解;有一些方程有两个或者更多特定数量的解;也有一些方程有无穷个解。
根:重根,在一元方程中方程的解可能会受到某些实际条件的限制,如:一道关于每天生产多少零件的应用题的函数符合x^2-10x-24=0 此方程的根:x=12,x2=-2,虽然x=-2符合方程的根的条件,
但由于考虑到实际应用,零件生产不可能是负数,所以,此时x2=-2就不是这个问题的解了,只能说是方程的根。
无根,一元高次方程的情况是一样的,如:方程x^3=1有1个实根和2个虚根,有时,方程根和解不作区别,方程无解又称无根。
增根,解分式方程、无理方程、对数方程时,需要化为整式方程,有时会产生增根,即使原方程无意义的未知数取值,此时该值便不是原方程的解。
参考资料:百度百科-解
参考资料:百度百科-根