高等数学中关于函数连续与可导的充要条件是什么?

如题所述

连续:某区间上,任意点处的极限存在且等于该点处的的函数值。 可导:在连续的基础上,该点的左右导数也要相等。
温馨提示:答案为网友推荐,仅供参考
第1个回答  2012-11-26
可导与可微等价,可导一定连续,连续不一定可导。例如y=|x|,x=0时连续但不可导。
第2个回答  推荐于2016-12-01
可导是一个定义,对于基本函数我们可以运用它的性质得出可导的区间,非初等函数则要根据导数的定义。对于一元函数可导和可微是等价的说法,对于多元函数可偏导并不一定可微。

对于初级函数,函数在区间(a,b)上连续,若在区间(a,b)上有X=Xo,存在c,c趋近于无穷小(即趋于0),f(Xo-c)=f(Xo+c)=f(Xo),则f(x)在X=Xo处可导,反之亦然。对于其他函数,或许会不适用。本回答被提问者和网友采纳
第3个回答  2012-11-26
这个问题情况很多,因为它的判定方法太多了,所以你要先说在什么条件下,然后再说它的充要条件是什么。
相似回答