负十二分之一。
计算所有自然数之和S,即公式“S=1+2+3+4+5+……”。
首先我们构造公式“S-S1”,即公式“S-S1=(1+2+3+4+5+……)-(1-2+3-4+5-……)",在进行如下图所示的公式推导:S-1/4=4S,即S=-1/12。
也就是说,所有自然数之和竟然是负十二分之一!
性质和特点:
1、有序性。自然数的有序性是指,自然数可以从0开始,不重复也不遗漏地排成一个数列:0,1,2,3,…这个数列叫自然数列。
2、无限性。自然数集是一个无穷集合,自然数列可以无止境地写下去。
3、传递性:设n1,n2,n3都是自然数,若n1>n2,n2>n3,那么n1>n3。
4、三岐性:对于任意两个自然数n1,n2,有且只有下列三种关系之一:n1>n2,n1=n2或n1<n2。
5、最小数原理:自然数集合的任一非空子集中必有最小的数。