直升机起飞的原理(一定要详细啊)

如题所述

直升机的前飞,特别是平飞,是其最基本的一种飞行状态。直升机作为一种运输工具,主要依靠前飞来完成其作业任务。为了更好地了解有关直升机前飞时的飞行特点,从无侧滑的等速直线平飞人手,有关上升率Vy不为零的前飞(上升和下降)留在下一节介绍。 直升机的水平直线飞行简称平飞。平飞是直升机使用最多的飞行状态,旋翼的许多特点 在乎飞时表现得更为明显。直升机平飞的许多性能决定于旋翼的空气动力特性,因此需要首 先说明这种飞行状态下直升机的力和旋翼的需用功率。

平飞时力的平衡

相对于速度轴系平飞时,作用在直升机上的力主要有旋空拉力T,全机重力 G,机体的废阻力 X身及尾桨推力T尾。前飞时速度轴系选取的原则是: X铀指向飞行速度V方向; Y轴垂直于X轴向上为正,2轴按右手法则确定。保持直升机等速直线平飞的力的平衡条件

平飞时力的平衡

其中 Tl, T2, T3分别为旋翼拉力在 X, Y,Z三个方向的分量。 对于单旋翼带尾桨直升机,由于尾桨轴线通常不在旋翼的旋转平面内,为保持侧向力矩 平衡,直升机稍带坡度角 r,故尾桨推力与水平面之间的夹角为 y,T尾与T3方向不完全 一致,因为 y角很小,即cosr约等于1,故Z向力采用近似等号。

平飞需用功率及其随速度的变化

平飞时,飞行速度垂直分量Vv=0,旋翼在重力方向和Z方向均无位移,在这两个方向的分力不做功,此时旋翼的需用功率由 三部分组成:型阻功率——P型;诱导 功率——P诱;废阻功率——P废。其中第三项是旋翼拉力克服机身阻力所消 耗的功率。

从上图可以看出,旋翼拉力的 第二分力 T2可平衡机身阻力 X身。对旋翼而言,其分力T2在X轴方向以速度V作位移。显然旋翼必须做功,P =T2V或P废=X身V,而机身废阻X身 在机身相对水平面姿态变化不大的情况 下,其值近似与V的平方成正比,这样 废阻功
平飞需用功率随速度的变化

率P废就可以近似认为与平飞速 度的三次方成正比,

平飞时,诱导功率为P诱=TV,其中T为旋翼拉力, vl为诱导速度。当飞行重量不变 时,近似认为旋翼拉力不变,诱导速度271随平飞速度 V的增大而减小,因此平飞诱导功率 P诱随平飞速度V的变化如上图中细实线②所示。

平飞型阻功率尸型则与桨叶平均迎角有关。随平飞速度的增加其平均迎角变化不大。所以P型随乎飞速度V的变化不大,如图中虚线①所示。

图中的实线④为上述三项之和,即总的平飞需用功率P平需随平飞速度的变化而变化。 它是一条马鞍形的曲线:小速度平飞时,废阻功率很小,但这时诱导功率很大,所以总的乎 飞需用功率仍然很大。但比悬停时要小些。在一定速度范围内,随着平飞速度的增加,由于 诱导功率急剧下降,而废阻功率的增量不大,因此总的平飞需用功率随乎飞速度的增加呈下 降趋势,但这种下降趋势随 V的增加逐渐减缓。速度继续增加则由于废阻功率随平飞速度 增加急剧增加。平飞需用功率随 V的增加在达到平飞需用功率的最低点后增加;总的平飞 需用功率随 V的变化则呈上升趋势,而且变得愈来愈明显。

直升机的后飞

相对气流不对称,引起挥舞及桨叶迎角的变化

直升机的侧飞

侧飞是直升机特有的又一种飞行状态,它与悬停、小速度垂直飞行及后飞 一起是实施某些特殊作业不可缺少的飞行性能。一般侧飞是在悬停基础上实施 的飞行状态。其特点是要多注意侧向力 的变化和平衡。由于直升机机体的侧向 投影面积很大,机体在侧飞时其空气动 力阻力特别大,因此直升机侧飞速度通 常很小。由于单旋翼带尾桨直升机的侧 向受力是不对称的,因此左侧飞和右侧 飞受力各不相同。向后行桨叶一侧侧飞,旋翼拉力向后行桨叶一例的水平分量大于向前行桨叶一侧的尾桨推力,直 升机向后方向运动,会产生与水平分量反向的空气动力阻力Z。当侧力平衡时,水平分量等于尾桨推力与空气动力 阻力之和,能保持等速向后行桨叶一侧侧飞。向前行桨叶一例侧飞时,旋翼拉 力的水平分量小于尾桨推力,在剩余尾桨推力作用下,直升机向民桨推力方向一例运动,空气动力阻力与尾桨推力反向,当侧力平衡时,保持等速向前行桨叶一侧飞行。
温馨提示:答案为网友推荐,仅供参考
第1个回答  2013-09-26
呵呵,这个问题可大可小,我先说小的,旋翼有初始安装角,在达到额定转速时,通过提升总矩杆,增加旋翼的迎角,增加旋翼的升力,从而使直升机起飞,同时尾桨提供反扭矩,保持直升机的平衡。

说大点,由于直升机旋翼的空气动力模型比较复杂,因此,可用多种空气动力模型解释升力的产生,比如:滑流理论,涡流理论等等,要全面详细掌握直升机的起飞原理,还是比较困难的。
第2个回答  2021-02-03

直升机能够起飞靠什么原理?看完3D图解才发现,自己想得太简单了!科技奇趣、奇葩、猎奇、飞机、直升机、黑科技、科普、科学实验、冷知识、科技趣闻

第3个回答  2013-09-26
直升机利用旋翼拉力从离开地面、并增速上升至一定高度的运动过程叫做起飞。直升机具有多种起飞方式,可以垂直起飞,也可以像固定翼飞机一样滑跑起飞。具体采用何种方式起飞,必须根据场地面积的大小、大气条件、周围障碍物的高度和起飞重量大小等具体情况决定。

  垂直起飞是直升机从垂直离地到一定高度上悬停,然后按一定的轨迹爬升增速的过程。 爬升高度视周围障碍物的高度而定。一般而言,作为起飞过程完成的离地高度约为20—30m,速度接近其经济速度。直升机根据不同的具体情况,可以采用两种不同的垂直起飞方法。

正常垂直起飞

  正常垂直起飞是指场地净空条件 较好,直升机垂直离地约0.15—0.25 个旋翼直径的高度,即部分利用旋翼的地面效应,进行短暂悬停,检查一 下发动机情况,然后以较小的爬升角 增速爬升到一定高度的过程。在这个过程中直升机旋翼的需用功率变化很大。在速度从零增速至经济速度的范 围内,直升机的受力状态变化很大。对操纵动作的协调性要求很高。下图为某型直升机正常垂直起飞过程的飞行轨迹和有关操纵量的变化。

超越障碍物起飞

  这种起飞方式是在场地周围有一定高度的障碍,并且场地比较狭小时 采用。与正常垂直起飞方式不同的是 垂直离地的悬停高度增高了,如果周 围障碍物的高度为h,起飞悬停高度 应不小于(10+h)m�员Vぶ鄙�?能安全超越障碍,如下图所示。

  由于悬停高度比正常垂直起飞时高出很多,因此这种起飞方式是在无地效高度上悬停,悬停需用功率较大。利用这种起飞方式时,为了在增速过程中不致掉高度,并要求发动机有部分剩余功率,以保证起飞安全。

滑跑起飞

  当直升机的载重量过大或者机场标高及其他气象条件使直升机无法垂直起飞时,它可以像固定翼飞机那样采用滑跑方式起飞。直升机的滑跑起飞,省去了垂直离地和近地面悬停这两个阶段,而分成地面滑跑增速和空中增速两个阶段进行。直升机增速至一定速度以后,由于旋翼需用功率的减小,就有足够的功率来增加旋翼的拉力,克服重力升空。随着飞行速度进一步增加,旋翼需用功率进一步下降,这时直升机就有部分剩余功率用来爬升和增速,完 成整个起飞过程。直升机的滑跑起飞过程如下图所示。

直升机的着陆

  直升机从一定高度下降,减速、降落到地面直至运动停止的过程称为着陆,是起飞的逆过程。

正常垂直着陆

  对于预定着陆地点场地净空条件好的情况,尽量采用正常垂直着陆,其着陆过程的飞行轨迹如下图所示。以这种方式着陆的做法是:以一定的下滑角大致向预定点下降,并逐渐减速, 在接近着陆预定点前,直升机作小速度贴地飞行,旋翼处在地面效应影响范围内。由于充分利用了地效,需用功率减小。在到达预定点的上空3 —4m高度上作短时间悬停,再以0.2—0.1m/s的下降率垂直下降直至接地。这种着陆方式对着陆场地表面质量要求少,场地面积相对来说比较小。

超越障碍物垂直着陆

  当着陆场地面积狭小,周围又有一定高度的障碍物,直升机在接近场地空间不允许作小速度的贴地飞行,此时就采用超越障碍物垂直着陆方式着陆。其飞行轨迹如下图所示。它与正常垂直着陆不同的是作减速和接地前短暂悬停高度不同,由于悬停不能利用地效,这种方式的需用功率较大。同时着陆点附近又有障碍物,直升机纵横向不允许较大的位移,操纵难度大一些。

滑跑着陆

  直升机在高原、高温地区,或载重量较大时,可用功率不足以允许用垂直着陆方式着陆,可以像固定翼飞机一样进行滑跑着陆。其着陆飞行轨迹如下图所示。滑跑着陆与 垂直着陆不问,直升机在按地瞬间,不但具有垂直速度,同时还有水平速度。直升机在接地后有一个滑跑过程,可进一步利用旋翼产生一个减速的水平分力,使直升机继续减速直至运动停止。

旋翼自转状态的下滑着陆

  在不同的可用功率下具有不同的下滑特性,当可用功率为零(如发动机关闭),这时旋翼作自转状态下降。这种工作状态,完全依靠直升机下降时重力位能作功提供给旋翼来产生拉力平衡重力。
相似回答