转动惯量是什么的量度?

如题所述

常见的转动惯量有:两端开通的薄圆柱壳,两端开通的厚圆柱,实心圆柱,薄圆盘,圆环,实心球,空心球等。转动惯量是刚体绕轴转动时惯性(回转物体保持其匀速圆周运动或静止的特性)的量度,用字母I或J表示。

在经典力学中,转动惯量(又称质量惯性矩,简称惯矩)通常以I或J表示,SI单位为kg·m²。对于一个质点,I=mr²,其中m是其质量,r是质点和转轴的垂直距离。转动惯量在旋转动力学中的角色相当于线性动力学中的质量,可形式地理解为一个物体对于旋转运动的惯性,用于建立角动量、角速度、力矩和角加速度等数个量之间的关系。

实验原理:

三线摆是在上圆盘的圆周上,沿等边三角形的顶点对称地连接在下面的一个较大的均匀圆盘边缘的正三角形顶点上。

当上、下圆盘水平三线等长时,将上圆盘绕竖直的中心轴线O1O转动一个小角度,借助悬线的张力使悬挂的大圆盘绕中心轴O1O作扭转摆动。同时,下圆盘的质心O将沿着转动轴升降,=H是上、下圆盘中心的垂直距离;=h是下圆盘在振动时上升的高度;是上圆盘的半径;是下圆盘的半径;α是扭转角。

由于三悬线能力相等,下圆盘运动对于中心轴线是对称的,仅分析一边悬线的运动。用L表示悬线的长度,当下圆盘扭转一个角度α时,下圆盘的悬线点移动到,下圆盘上升的高度为,与其他几何参量的关系可作如下考虑。

温馨提示:答案为网友推荐,仅供参考
相似回答
大家正在搜