三角函数性质有哪些?

如题所述

一、y=sinx
1、奇偶性:奇函数
2、图像性质:
中心对称:关于点(kπ,0)对称
轴对称:关于x=kπ+π/2对称
3、单调性
增区间:x∈[2kπ-π/2,2kπ+π/2]
减区间:x∈[2kπ+π/2,2kπ+3π/2]
二、y=cosx
1、奇偶性:偶函数
2、图像性质:
中心对称:关于点(kπ+π/2,0)对称
轴对称:关于x=kπ对称
3、单调性:
增区间:x∈[2kπ-π,2kπ]
减区间:x∈[2kπ,2kπ+π]
三、y=tanx
1、奇偶性:奇函数
2、图像性质:
中心对称:关于点(kπ/2,0)对称
3、单调性:
增区间:x∈(kπ-π/2,kπ+π/2)
没有减区间
四、y=cotx
1、奇偶性:奇函数
2、图像性质:
中心对称:关于点(kπ/2,0)对称
3、单调性:
减函数:x∈(kπ,kπ+π)
没有增区间
温馨提示:答案为网友推荐,仅供参考
第1个回答  2019-05-02
你要的是不是这些:
同角三角函数间的基本关系式:
·平方关系:
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
·商的关系:
tanα=sinα/cosα
cotα=cosα/sinα
·倒数关系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
三角函数恒等变形公式:
·两角和与差的三角函数:
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
·倍角公式:
sin(2α)=2sinα·cosα
cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan(2α)=2tanα/[1-tan^2(α)]
·三倍角公式:
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
·半角公式:
sin^2(α/2)=(1-cosα)/2
cos^2(α/2)=(1+cosα)/2
tan^2(α/2)=(1-cosα)/(1+cosα)
tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα
·万能公式:
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
·积化和差公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
·和差化积公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2
相似回答