圆周率是怎么计算的?

请说出圆周率怎么算出来饿》?

【圆周率简介】
[编辑本段]
圆周率是指平面上圆的周长与直径之比。用希腊字母 π (读"Pài")表示。中国古代有圆率、周率、周等名称。(在一般计算时π人们都把π这无限不循环小数化成3.14)

【圆周率的历史】
[编辑本段]
古希腊欧几里得《几何原本》(约公元前3世纪初)中提到圆周率是常数,中国古算书《周髀算经》( 约公元前2世纪)中有“径一而周三”的记载,也认为圆周率是常数。历史上曾采用过圆周率的多种近似值,早期大都是通过实验而得到的结果,如古埃及纸草书(约公元前1700)中取π=(4/3)^4≈3.1604 。第一个用科学方法寻求圆周率数值的人是阿基米德,他在《圆的度量》(公元前3世纪)中用圆内接和外切正多边形的周长确定圆周长的上下界,从正六边形开始,逐次加倍计算到正96边形,得到(3+(10/71))<π<(3+(1/7)) ,开创了圆周率计算的几何方法(亦称古典方法,或阿基米德方法),得出精确到小数点后两位的π值。
中国数学家刘徽在注释《九章算术》(263年)时只用圆内接正多边形就求得π的近似值,也得出精确到两位小数的π值,他的方法被后人称为割圆术。他用割圆术一直算到圆内接正192边形。
南北朝时代数学家祖冲之进一步得出精确到小数点后7位的π值(约5世纪下半叶),给出不足近似值3.1415926和过剩近似值3.1415927,还得到两个近似分数值,密率355/113和约率22/7。其中的密率在西方直到1573才由德国人奥托得到,1625年发表于荷兰工程师安托尼斯的著作中,欧洲称之为安托尼斯率。
阿拉伯数学家卡西在15世纪初求得圆周率17位精确小数值,打破祖冲之保持近千年的纪录。
德国数学家柯伦于1596年将π值算到20位小数值,后投入毕生精力,于1610年算到小数后35位数,该数值被用他的名字称为鲁道夫数。
无穷乘积式、无穷连分数、无穷级数等各种π值表达式纷纷出现,π值计算精度也迅速增加。1706年英国数学家梅钦计算π值突破100位小数大关。1873 年另一位英国数学家尚可斯将π值计算到小数点后707位,可惜他的结果从528位起是错的。到1948年英国的弗格森和美国的伦奇共同发表了π的808位小数值,成为人工计算圆周率值的最高纪录。
电子计算机的出现使π值计算有了突飞猛进的发展。1949年美国马里兰州阿伯丁的军队弹道研究实验室首次用计算机(ENIAC)计算π值,一下子就算到2037位小数,突破了千位数。1989年美国哥伦比亚大学研究人员用克雷-2型和IBM-VF型巨型电子计算机计算出π值小数点后4.8亿位数,后又继续算到小数点后10.1亿位数,创下新的纪录。至今,最新纪录是小数点后12411亿位。
除π的数值计算外,它的性质探讨也吸引了众多数学家。1761年瑞士数学家兰伯特第一个证明π是无理数。1794年法国数学家勒让德又证明了π2也是无理数。到1882年德国数学家林德曼首次证明了π是超越数,由此否定了困惑人们两千多年的“化圆为方”尺规作图问题。还有人对π的特征及与其它数字的联系进行研究。如1929年苏联数学家格尔丰德证明了eπ 是超越数等等。

【圆周率的计算】
[编辑本段]
古今中外,许多人致力于圆周率的研究与计算。为了计算出圆周率的越来越好的近似值,一代代的数学家为这个神秘的数贡献了无数的时间与心血。
十九世纪前,圆周率的计算进展相当缓慢,十九世纪后,计算圆周率的世界纪录频频创新。整个十九世纪,可以说是圆周率的手工计算量最大的世纪。
进入二十世纪,随着计算机的发明,圆周率的计算有了突飞猛进。借助于超级计算机,人们已经得到了圆周率的2061亿位精度。
历史上最马拉松式的计算,其一是德国的Ludolph Van Ceulen,他几乎耗尽了一生的时间,计算到圆的内接正262边形,于1609年得到了圆周率的35位精度值,以至于圆周率在德国被称为Ludolph数;其二是英国的威廉·山克斯,他耗费了15年的光阴,在1874年算出了圆周率的小数点后707位。可惜,后人发现,他从第528位开始就算错了。
把圆周率的数值算得这么精确,实际意义并不大。现代科技领域使用的圆周率值,有十几位已经足够了。如果用鲁道夫算出的35位精度的圆周率值,来计算一个能把太阳系包起来的一个圆的周长,误差还不到质子直径的百万分之一。以前的人计算圆周率,是要探究圆周率是否循环小数。自从1761年兰伯特证明了圆周率是无理数,1882年林德曼证明了圆周率是超越数后,圆周率的神秘面纱就被揭开了。
现在的人计算圆周率, 多数是为了验证计算机的计算能力,还有,就是为了兴趣。

【圆周率的计算方法】
[编辑本段]
古人计算圆周率,一般是用割圆法。即用圆的内接或外切正多边形来逼近圆的周长。阿基米德用正96边形得到圆周率小数点后3位的精度;刘徽用正3072边形得到5位精度;鲁道夫用正262边形得到了35位精度。这种基于几何的算法计算量大,速度慢,吃力不讨好。随着数学的发展,数学家们在进行数学研究时有意无意地发现了许多计算圆周率的公式。下面挑选一些经典的常用公式加以介绍。除了这些经典公式外,还有很多其它公式和由这些经典公式衍生出来的公式,就不一一列举了。
1、马青公式
π=16arctan1/5-4arctan1/239
这个公式由英国天文学教授约翰·马青于1706年发现。他利用这个公式计算到了100位的圆周率。马青公式每计算一项可以得到1.4位的十进制精度。因为它的计算过程中被乘数和被除数都不大于长整数,所以可以很容易地在计算机上编程实现。
还有很多类似于马青公式的反正切公式。在所有这些公式中,马青公式似乎是最快的了。虽然如此,如果要计算更多的位数,比如几千万位,马青公式就力不从心了。
2、拉马努金公式
1914年,印度天才数学家拉马努金在他的论文里发表了一系列共14条圆周率的计算公式。这个公式每计算一项可以得到8位的十进制精度。1985年Gosper用这个公式计算到了圆周率的17,500,000位。
1989年,大卫·丘德诺夫斯基和格雷高里·丘德诺夫斯基兄弟将拉马努金公式改良,这个公式被称为丘德诺夫斯基公式,每计算一项可以得到15位的十进制精度。1994年丘德诺夫斯基兄弟利用这个公式计算到了4,044,000,000位。丘德诺夫斯基公式的另一个更方便于计算机编程的形式是:
3、AGM(Arithmetic-Geometric Mean)算法
高斯-勒让德公式:
这个公式每迭代一次将得到双倍的十进制精度,比如要计算100万位,迭代20次就够了。1999年9月,日本的高桥大介和金田康正用这个算法计算到了圆周率的206,158,430,000位,创出新的世界纪录。
4、波尔文四次迭代式:
这个公式由乔纳森·波尔文和彼得·波尔文于1985年发表,它四次收敛于圆周率。
5、bailey-borwein-plouffe算法
这个公式简称BBP公式,由David Bailey, Peter Borwein和Simon Plouffe于1995年共同发表。它打破了传统的圆周率的算法,可以计算圆周率的任意第n位,而不用计算前面的n-1位。这为圆周率的分布式计算提供了可行性。
6、丘德诺夫斯基公式
这是由丘德诺夫斯基兄弟发现的,十分适合计算机编程,是目前计算机使用较快的一个公式。以下是这个公式的一个简化版本:

【圆周率的计算历史】
[编辑本段]
时间 纪录创造者 小数点后位数 所用方法
前2000 古埃及人 0
前1200 中国 0
前500 《圣经》 0(周三径一)
前250 阿基米德 3
263 刘徽 5 古典割圆术
480 祖冲之 7
1429 Al-Kashi 14
1593 Romanus 15
1596 鲁道夫 20 古典割圆术
1609 鲁道夫 35
1699 夏普 71 夏普无穷级数
1706 马青 100 马青公式
1719 (法)德·拉尼 127(112位正确)夏普无穷级数
1794(奥地利)乔治·威加 140 欧拉公式
1824 (英)威廉·卢瑟福 208(152位正确)勒让德公式
1844 Strassnitzky & Dase 200
1847 Clausen 248
1853 Lehmann 261
1853 Rutherford 440
1874 威廉·山克斯 707(527位正确)
20世纪后
年 月 纪录创造者 所用机器 小数点后位数
1946 (英)弗格森 620
1947 1 (英)弗格森 710
1947 9 Ferguson & Wrench 808
1949 Smith & Wrench 1,120

1949 Reitwiesner et al ENIAC 2,037
1954 Nicholson & Jeenel NORC 3,092
1957 Felton Pegasus 7,480
1958 1 Genuys IBM704 10,000
1958 5 Felton Pegasus 10,021
1959 Guilloud IBM 704 16,167
1961 Shanks & Wrench IBM 7090 100,265
1966 Guilloud & Filliatre IBM 7030 250,000
1967 Guilloud & Dichampt CDC 6600 500,000
1973 Guilloud & Bouyer CDC 7600 1,001,250
1981 Miyoshi & Kanada FACOM M-200 2,000,036
1982 Guilloud 2,000,050
1982 Tamura MELCOM 900II 2,097,144
1982 Tamura & Kanada HITACHI M-280H 4,194,288
1982 Tamura & Kanada HITACHI M-280H 8,388,576
1983 Kanada, Yoshino & Tamura HITACHI M-280H 16,777,206
1985 10 Gosper Symbolics 3670 17,526,200
1986 1 Bailey CRAY-2 29,360,111
1986 9 Kanada & Tamura HITACHI S-810/20 33,554,414
1986 10 Kanada & Tamura HITACHI S-810/20 67,108,839
1987 1 Kanada, Tamura & Kubo et al NEC SX-2 134,217,700
1988 1 Kanada & Tamura HITACHI S-820/80 201,326,551
1989 5 Chudnovskys CRAY-2 & IBM-3090/VF 480,000,000
1989 6 Chudnovskys IBM 3090 525,229,270
1989 7 Kanada & Tamura HITACHI S-820/80 536,870,898
1989 8 Chudnovskys IBM 3090 1,011,196,691
1989 11 Kanada & Tamura HITACHI S-820/80 1,073,741,799
1991 8 Chudnovskys 2,260,000,000
1994 5 Chudnovskys 4,044,000,000
1995 8 Takahashi & Kanada HITACHI S-3800/480 4,294,967,286
1995 10 Takahashi & Kanada 6,442,450,938
1997 7 Takahashi & Kanada 51,539,600,000
1999 4 Takahashi & Kanada 68,719,470,000
1999 9 Takahashi & Kanada HITACHI SR8000 206,158,430,000
2002 Takahashi Team 1,241,100,000,000

【圆周率的最新计算纪录】
[编辑本段]
1、新世界纪录
圆周率的最新计算纪录由日本人金田康正的队伍所创造。他们于2002年算出π值1,241,100,000,000 位小数,这一结果打破了他们于1999年9月18日创造的206,000,000,000位小数的世界纪录。
2、个人计算圆周率的世界纪录
在一个现场解说验证活动中,一名59岁日本老人Akira Haraguchi将圆周率π算到了小数点后的83431位,这名孜孜不倦的59岁老人向观众讲解了长达13个小时,最终获得认同。这一纪录已经被收入了Guinness世界大全中。据报道,此前的纪录是由一名日本学生于1995年计算出的,当时的精度是小数点后的42000位。
温馨提示:答案为网友推荐,仅供参考
第1个回答  2008-09-11
圆周率是一个极其驰名的数。从有文字记载的历史开始,这个数就引进了外行人和学者们的兴趣。作为一个非常重要的常数,圆周率最早是出于解决有关圆的计算问题。仅凭这一点,求出它的尽量准确的近似值,就是一个极其迫切的问题了。事实也是如此,几千年来作为数学家们的奋斗目标,古今中外一代一代的数学家为此献出了自己的智慧和劳动。回顾历史,人类对 π 的认识过程,反映了数学和计算技术发展情形的一个侧面。 π 的研究,在一定程度上反映这个地区或时代的数学水平。德国数学史家康托说:“历史上一个国家所算得的圆周率的准确程度,可以作为衡量这个国家当时数学发展水平的指标。”直到19世纪初,求圆周率的值应该说是数学中的头号难题。为求得圆周率的值,人类走过了漫长而曲折的道路,它的历史是饶有趣味的。我们可以将这一计算历程分为几个阶段。

实验时期

通过实验对 π 值进行估算,这是计算 π 的的第一阶段。这种对 π 值的估算基本上都是以观察或实验为根据,是基于对一个圆的周长和直径的实际测量而得出的。在古代世界,实际上长期使用 π =3这个数值。最早见于文字记载的有基督教《圣经》中的章节,其上取圆周率为3。这一段描述的事大约发生在公元前950年前后。其他如巴比伦、印度、中国等也长期使用3这个粗略而简单实用的数值。在我国刘徽之前“圆径一而周三”曾广泛流传。我国第一部《周髀算经》中,就记载有圆“周三径一”这一结论。在我国,木工师傅有两句从古流传下来的口诀:叫做:“周三径一,方五斜七”,意思是说,直径为1的圆,周长大约是3,边长为5的正方形,对角线之长约为7。这正反映了早期人们对圆周率 π 和√2 这两个无理数的粗略估计。东汉时期官方还明文规定圆周率取3为计算面积的标准。后人称之为“古率”。

早期的人们还使用了其它的粗糙方法。如古埃及、古希腊人曾用谷粒摆在圆形上,以数粒数与方形对比的方法取得数值。或用匀重木板锯成圆形和方形以秤量对比取值……由此,得到圆周率的稍好些的值。如古埃及人应用了约四千年的 4 (8/9)2 = 3.1605。在印度,公元前六世纪,曾取 π= √10 = 3.162。在我国东、西汉之交,新朝王莽令刘歆制造量的容器――律嘉量斛。刘歆在制造标准容器的过程中就需要用到圆周率的值。为此,他大约也是通过做实验,得到一些关于圆周率的并不划一的近似值。现在根据铭文推算,其计算值分别取为3.1547,3.1992,3.1498,3.2031比径一周三的古率已有所进步。人类的这种探索的结果,当主要估计圆田面积时,对生产没有太大影响,但以此来制造器皿或其它计算就不合适了。本回答被网友采纳
第2个回答  2008-09-11
3.1415926535 8979323846 2643383279 5028841971 6939937510
3.1415926535 8979323846 2643383279 5028841971 6939937510
5820974944 5923078164 0628620899 8628034825 3421170679
8214808651 3282306647 0938446095 5058223172 5359408128
4811174502 8410270193 8521105559 6446229489 5493038196
4428810975 6659334461 2847564823 3786783165 2712019091
4564856692 3460348610 4543266482 1339360726 0249141273
7245870066 0631558817 4881520920 9628292540 9171536436
7892590360 0113305305 4882046652 1384146951 9415116094
3305727036 5759591953 0921861173 8193261179 3105118548
0744623799 6274956735 1885752724 8912279381 8301194912
9833673362 4406566430 8602139494 6395224737 1907021798
6094370277 0539217176 2931767523 8467481846 7669405132
0005681271 4526356082 7785771342 7577896091 7363717872
1468440901 2249534301 4654958537 1050792279 6892589235
4201995611 2129021960 8640344181 5981362977 4771309960
5187072113 4999999837 2978049951 0597317328 1609631859
5024459455 3469083026 4252230825 3344685035 2619311881
7101000313 7838752886 5875332083 8142061717 7669147303
5982534904 2875546873 1159562863 8823537875 9375195778
1857780532 1712268066 1300192787 6611195909 2164201989
3809525720 1065485863 2788659361 5338182796 8230301952
0353018529 6899577362 2599413891 2497217752 8347913151
5574857242 4541506959 5082953311 6861727855 8890750983
8175463746 4939319255 0604009277 0167113900 9848824012
8583616035 6370766010 4710181942 9555961989 4676783744
9448255379 7747268471 0404753464 6208046684 2590694912
9331367702 8989152104 7521620569 6602405803 8150193511
2533824300 3558764024 7496473263 9141992726 0426992279
6782354781 6360093417 2164121992 4586315030 2861829745
5570674983 8505494588 5869269956 9092721079 7509302955
3211653449 8720275596 0236480665 4991198818 3479775356
6369807426 5425278625 5181841757 4672890977 7727938000
8164706001 6145249192 1732172147 7235014144 1973568548
1613611573 5255213347 5741849468 4385233239 0739414333
4547762416 8625189835 6948556209 9219222184 2725502542
5688767179 0494601653 4668049886 2723279178 6085784383
8279679766 8145410095 3883786360 9506800642 2512520511
7392984896 0841284886 2694560424 1965285022 2106611863
0674427862 2039194945 0471237137 8696095636 4371917287
4677646575 7396241389 0865832645 9958133904 7802759009
9465764078 9512694683 9835259570 9825822620 5224894077
2671947826 8482601476 9909026401 3639443745 5305068203
4962524517 4939965143 1429809190 6592509372 2169646151
5709858387 4105978859 5977297549 8930161753 9284681382
6868386894 2774155991 8559252459 5395943104 9972524680
8459872736 4469584865 3836736222 6260991246 0805124388
4390451244 1365497627 8079771569 1435997700 1296160894
4169486855 5848406353 4220722258 2848864815 8456028506
0168427394 5226746767 8895252138 5225499546 6672782398

参考资料:-

第3个回答  2008-09-11
用圆的周长除于直径就可以了
第4个回答  2008-09-11
太麻烦。周长和直径的比值就完了嘛,说那么多干什么。
相似回答