高数函数可导充分必要条件是函数可导的充要条件:函数在该点连续且左导数、右导数都存在并相等。
微积分是在17世纪末由英国物理学家、数学家牛顿和德国数学家莱布尼茨建立起来的。微积分是由微分学和积分学两部分组成,微分学是基础。微分学的基本概念是导数和微分,核心概念是导数。导数反应了函数相对于自变量的变化率问题。
多元微分:
多元微分又叫全微分,是由两个自变量的偏导数相对应的一元微分的增量表示的。
ΔZ=A*ΔX+B*ΔY+ο(ρ)为函数Z在点(x、y)处的全增量,(其中A、B不依赖于ΔX和ΔY,而只与x、y有关,ρ=[(x²+y∧2)]∧(1\2),A*ΔX+B*ΔY即是Z在点的全微分。
总的来说,微分学的核心思想便是以直代曲,即在微小的邻域内,可以用一段切线段来代替曲线以简化计算过程。