大数据时代,企业数据蕴藏着的商业价值

如题所述

第1个回答  2022-07-19
如今大数据早已不再是什么新鲜词,它已经被大众熟悉,可以称作是移动互联时代流动的黄金。

据《大数据产业发展前景与投资战略规划分析报告》(前瞻产业研究院发布)数据统计显示,中国大数据产业在2017年达到4700亿元的规模,同比增长30%,预计到2020年,中国大数据市场产值将突破万亿。随着大数据市场的快速发展,企业决策人员越来越重视对大数据的利用,如何借助大数据让企业快速成长也成为了人们的关注重点。

大数据挖掘商业价值的方法主要分为四种:

客户群体细分 ,然后为每个群体量定制特别的服务。

模拟现实环境 ,发掘新的需求同时提高投资的回报率。

加强部门联系 ,提高整条管理链条和产业链条的效率。

降低服务成本 ,发现隐藏线索进行产品和服务的创新。

对于企业来说,100条理论确实不如一个成功的标杆有实践意义,从亚马逊、Facebook、谷歌、LinkedIn,到腾讯、阿里、百度,都因其拥有大量的用户注册和运营信息,成为天然的大数据公司。

如果全球哪家公司从大数据发掘出了最大价值,截至目前,答案可能非亚马逊莫属。

亚马逊也要处理海量数据,这些交易数据的直接价值更大。作为一家“信息公司”(而非国内许多电商自己定位的“零售公司”),亚马逊不仅从每个用户的购买行为中获得信息,还将每个用户在其网站上的所有行为都记录下来:页面停留时间、用户是否查看评论、每个搜索的关键词、浏览的商品等等。这种对数据价值的高度敏感和重视,以及强大的挖掘能力,使得亚马逊早已远远超出了它的传统运营方式。

亚马逊CTO Werner Vogels早期在CeBIT上关于大数据的演讲,向与会者描述了亚马逊在大数据时代的商业蓝图。

长期以来,亚马逊一直通过大数据分析,尝试定位客户和和获取客户反馈。“在此过程中,你会发现数据越大,结果越好。为什么有的企业在商业上不断犯错?那是因为他们没有足够的数据对运营和决策提供支持,”Vogels说, “一旦进入大数据的世界,企业的手中将握有无限可能。” 从支撑新兴技术企业的基础设施到消费内容的移动设备,亚马逊的触角已触及到更为广阔的领域。

推荐: 亚马逊的各个业务环节都离不开“数据驱动”的身影。在亚马逊上买过东西的朋友可能对它的推荐功能都很熟悉,“买过X商品的人,也同时买过Y商品”的推荐功能看上去很简单,却非常有效,同时这些精准推荐结果的得出过程也非常复杂。

预测: 用户需求预测(Demand Forecasting)是通过历史数据来预测用户未来的需求。对于书、手机、家电这些东西——亚马逊内部叫硬需求(Hard Line)的产品,你可以认为是“标品”(但也不一定)——预测是比较准的,甚至可以预测到相关产品属性的需求。但是对于服装这样软需求(Soft Line)产品,亚马逊干了十多年都没有办法预测得很好,因为这类东西受到的干扰因素太多了,比如:用户的对颜色款式的喜好,穿上去合不合身,爱人朋友喜不喜欢…… 这类东西太易变,买得人多反而会卖不好,所以需要更为复杂的预测模型。

测试: 你会认为亚马逊网站上的某段页面文字只是碰巧出现的吗?其实,亚马逊会在网站上持续不断地测试新的设计方案,从而找出转化率最高的方案。整个网站的布局、字体大小、颜色、按钮以及其他所有的设计,其实都是在多次审慎测试后的最优结果。

记录: 亚马逊的移动应用让用户有一个流畅的无处不在的体验的同时,也通过收集手机上的数据深入地了解了每个用户的喜好信息;更值得一提的是Kindle Fire,内嵌的Silk浏览器可以将用户的行为数据一一记录下来。

以数据为导向的方法并不仅限于以上领域。对于亚马逊来说,大数据意味着大销售量。数据显示出什么是有效的、什么是无效的,新的商业投资项目必须要有数据的支撑。 对数据的长期专注让亚马逊能够以更低的售价提供更好的服务。

还有一个很典型的案例,就是几年伴随社区营销火气来的小红书。

和其他电商平台不同,小红书是从社区起家 。2016年初,小红书将人工运营内容改成了机器分发的形式。通过大数据和人工智能,将社区中的内容精准匹配给对它感兴趣的用户,从而提升用户体验。

如今的小红书,已经不是简单的社交分享了,更多的是基于后台的大数据分析和智能推送,最终形成了良好的正向闭环反馈。

通过以上两个大数据服务案例,我们不难看出数据团队其实是一个独立性很强的团队,因为他们需要完成的事情很多,这其中包含从数据源开始到数据的输出。对研发而言,他们相当于纪检委,需要组织协调数据的周转,实现对数据的监控,同时也要配合研发完成一些数据聚合挖掘累开发。对业务而言,他们相当于研发,因为他们需要输出报表和相应的产品,所以如何构建一个高效的数据团队,对很多企业来说一直在探索,感觉隔雾看花,捉摸不清。

一个企业想要自主研发一个数据平台,创建一个数据分析团队,会是一个很庞大的工程量。企业数据的类型大致可分为三类:

传统企业数据: 包括CRM systems的消费者数据,传统的ERP数据,库存数据以及账目数据等。

机器和传感器数据: 包括呼叫记录,智能仪表,工业设备传感器,交易数据等。

社交数据: 包括用户行为记录,反馈数据等。如微博、微信这样的社交媒体平台。

从理论上来看,大部分企业都会从大数据的发展中受益。但由于数据缺乏以及从业人员本身的原因,对于中小型的初创企业来说,独自开发的成本太高了。而有财力的传统企业呢,也产生了大量的数据,但是数据源很乱,也没有统一的存储方式,更别说研发了。即使招人来做数据分析,也不知道从何下手。该怎么办呢?

其实,数据的价值就是从获取数据,存储,加工到挖掘分析,最终实现可视化,辅助商业决策。想真正去应用在企业的流程中,多少要依赖于专业的工具或平台,归云智能打造的大数据系统解决方案,可以帮助传统企业完成数据化,智能化的升级改造。帮助企业建立稳定高效的运营机制,推动企业实现降本增效和业务的高速发展。

通过新兴的智能技术,企业可以有新的视野,探索更宽广的商业模式,实现最大的商业价值。产品部署使用方便,中小企业可以使用归云智能提供的云服务,大型企业可以选择私有化部署到自己的服务器。 感兴趣的总们可以访问官网:  http://www.guiyum.com ,了解详情。
相似回答