急求一篇焊接类外文文献与翻译啊! 求大神帮助!

如题所述

第1个回答  2015-06-17
Welding is a fabrication or sculptural process that joins materials, usually metals or thermoplastics, by causing fusion, which is distinct from lower temperature metal-joining techniques such as brazing and soldering, which do not melt the base metal. In addition to melting the base metal, a filler material is often added to the joint to form a pool of molten material (the weld pool) that cools to form a joint that can be as strong as the base material. Pressure may also be used in conjunction with heat, or by itself, to produce a weld.
Some of the best known welding methods include:
Shielded metal arc welding (SMAW) - also known as "stick welding", uses an electrode that has flux, the protectant for the puddle, around it. The electrode holder holds the electrode as it slowly melts away. Slag protects the weld puddle from atmospheric contamination.
Gas tungsten arc welding (GTAW) - also known as TIG (tungsten, inert gas), uses a non-consumable tungstenelectrode to produce the weld. The weld area is protected from atmospheric contamination by an inert shielding gas such as Argon or Helium.
Gas metal arc welding (GMAW) - commonly termed MIG (metal, inert gas), uses a wire feeding gun that feeds wire at an adjustable speed and flows an argon-based shielding gas or a mix of argon and carbon dioxide (CO2) over the weld puddle to protect it from atmospheric contamination.
Flux-cored arc welding (FCAW) - almost identical to MIG welding except it uses a special tubular wire filled with flux; it can be used with or without shielding gas, depending on the filler.
Submerged arc welding (SAW) - uses an automatically fed consumable electrode and a blanket of granular fusible flux. The molten weld and the arc zone are protected from atmospheric contamination by being "submerged" under the flux blanket.
Electroslag welding (ESW) - a highly productive, single pass welding process for thicker materials between 1 inch (25 mm) and 12 inches (300 mm) in a vertical or close to vertical position.
Many different energy sources can be used for welding, including a gas flame, an electric arc, a laser, an electron beam, friction, and ultrasound. While often an industrial process, welding may be performed in many different environments, including in open air, under water, and in outer space. Welding is a hazardous undertaking and precautions are required to avoid burns, electric shock, vision damage, inhalation of poisonous gases and fumes, and exposure to intense ultraviolet radiation.
Until the end of the 19th century, the only welding process was forge welding, which blacksmiths had used for centuries to join iron and steel by heating and hammering. Arc welding and oxyfuel welding were among the first processes to develop late in the century, and electric resistance welding followed soon after. Welding technology advanced quickly during the early 20th century as World War I and World War II drove the demand for reliable and inexpensive joining methods. Following the wars, several modern welding techniques were developed, including manual methods like SMAW, now one of the most popular welding methods, as well as semi-automatic and automatic processes such as GMAW, SAW, FCAW and ESW. Developments continued with the invention of laser beam welding, electron beam welding, magnetic pulse welding (MPW), and friction stir welding in the latter half of the century. Today, the science continues to advance.Robot welding is commonplace in industrial settings, and researchers continue to develop new welding methods and gain greater understanding of weld quality.
焊接是一种制造或雕刻过程联接材料,通常是金属或热塑性塑料,通过使融合,这是从较低温度金属接合技术如钎焊和焊接,这不熔化的基体金属不同。除了熔化基础金属,填充材料通常加入到接头以形成熔融材料(熔融池),该冷却以形成一个接头,该接头可以是强如基材的池。压力也可结合使用热,或由本身,以产生一焊缝。
一些最好的公知的焊接方法包括:
保护金属电弧焊(SMAW) - 也被称为“粘焊接”,使用具有焊剂,防护剂为水坑,它周围的电极。电极支架保持电极,它慢慢地融化。渣保护不受大气污染熔池。
气体钨电弧焊(GTAW) - 也被称为TIG(钨惰性气体),使用非自耗钨电极以产生焊缝。焊缝区域由惰性保护气体如氩气或氦气免受大气污染。
气体保护金属极电弧焊(GMAW) - 通常称为MIG(金属惰性气体),采用的是送丝枪送线以可调速度,并在流动的氩基保护气体或氩气和二氧化碳(CO 2)的混合熔池,以保护它免受大气污染。
药芯焊丝电弧焊(药芯焊丝) - 几乎等同于MIG焊接除了它使用一种特殊的管状焊丝充满通量;它可以用于具有或不具有保护气体,这取决于填料。
埋弧焊(SAW) - 采用自动供耗电极和颗粒状熔通量一条毯子。熔融的焊接和电弧区域由下磁通毯被“浸没”被保护不受大气污染。
电渣焊(ESW) - 高生产力,单道焊接过程为1英寸(25毫米)12英寸(300毫米)在垂直或接近垂直的位置之间较厚的材料。
许多不同能源可用于焊接,包括一气体火焰,电弧,激光,电子束,摩擦,和超声波。而经常工业方法,焊接可以在许多不同的环境中进行,其中包括在露天,下水,并在外层空间。焊接是一个危险的任务和注意事项需要避免烫伤,触电,视力损害,吸入有毒气体和烟雾,并暴露于强烈的紫外线辐射。
直到19世纪末,唯一的焊接工艺是锻焊,这铁匠已经使用了几个世纪通过加热和锤击加入钢铁。电弧焊和富氧焊接是第一工序中,以晚在世纪发展,电阻焊接,随后不久之后。焊接技术在20世纪初快速推进第一次世界大战和第二次世界大战开了可靠和廉价的连接方法的需求。继战争,几个现代焊接技术被开发,包括手动的方法,如手工电弧焊,现在最流行的焊接方法之一,以及半自动和全自动过程,如气体保护焊,埋弧焊,药芯焊丝和ESW。发展继续与激光束焊接,电子束焊接,磁脉冲焊接(MPW)和摩擦搅拌焊接在世纪后半本发明。今天,科学不断前进。机器人焊接是司空见惯在工业环境中,研究人员继续开发新的焊接方法,获得的焊缝质量更深入的了解。
求采纳。追问

谢谢大哥 关键这不是文献啊 没有作者什么的啊

追答

补充下作者:
ASM International (2003). Trends in Welding Research. Materials Park, Ohio: ASM International. ISBN 0-87170-780-2.
Cary, Howard B; Helzer, Scott C. (2005). Modern Welding Technology. Upper Saddle River, New Jersey: Pearson Education. ISBN 0-13-113029-3.
Hicks, John (1999). Welded Joint Design. New York: Industrial Press. ISBN 0-8311-3130-6.
Kalpakjian, Serope; Steven R. Schmid (2001). Manufacturing Engineering and Technology. Prentice Hall. ISBN 0-201-36131-0.
Lincoln Electric (1994). The Procedure Handbook of Arc Welding. Cleveland: Lincoln Electric. ISBN 99949-25-82-2.
Weman, Klas (2003). Welding processes handbook. New York, NY: CRC Press LLC. ISBN 0-8493-1773-8.
需要翻译吗?

本回答被提问者和网友采纳
相似回答