sin,cos,tan都是我们常见的三角函数这类型的函数,这类型符号在数学书本当中能够非常容易得看见。因为在数学书本当中只要遇上几何的题目都需要这三种函数进行解答。因此,我们在观看初中或者高中的数学书本的时候,很容易就能发现这些符号的出现。那么这三个符号分别对应的是正弦函数,余弦函数以及正切函数。他们之间也有着一定的关联,这关联也是我们做题目最重要的方法。因为了解他们的关联性我们才能够有一个函数转变为另,正弦函数和余弦函数是一对互为导数的数字。
首先正弦函数和余弦函数是一对互为倒数的符号,在进行四运算的时候,我们可以通过求得正弦函数就可以得到余弦函数的数值。在做题的时候,我们就可以利用这种方法非常简便的解答。但是了解他们之间的关系还是不可以的,我们需要知道其中的度数值。首先正弦函数的sin 30= 1/2,sin 45=根号2/2,sin 60= 根号3/2,同力,我们就可以利用正弦函数,余弦函数相互为导数的关系,求得余弦函数的分别度数值cos 30=根号3/2,cos 45=根号2/2,cos 60=1/2。
对于正切函数而言,他们与正弦和余弦函数之间的关系是正弦函数除以余弦函数。所以正切函数当中的函数值我们要通过特殊值进行计算。我们可以利用上文所求出的相关数值,求得正弦函数与以前函数之间的比例,得出正切函数的数数值。其中tan 45=1,tan 90 是不存在的。
只有对于这些函数的数值有着一定的记忆,才能更好的解答相关的数学问题。