在线等急,大哥大姐们谢谢了,一道抽象代数的题?

Let 𝐽 and 𝐾 be normal subgroups of a group 𝐺 and suppose the intersection of 𝐽 and 𝐾 is
the trivial subgroup. Let 𝑘 ∈ 𝐾 . Show that for every 𝑗 ∈ 𝐽 , we have 𝑗𝑘 = 𝑘 𝑗 .

第1个回答  2020-09-26
证明:由于J,K是G的正规子群,所以对任意j∈J,k∈K,有:kjk^(-1)∈J,j^(-1)kj∈K.注意观察,此时有:j^(-1)kjk^(-1)∈J∩K,而J∩K={e}为平凡子群,因而j^(-1)kjk^(-1)=e,对此式两边同时左乘j以及右乘k即得:kj=jk,原命题得证.
相似回答
大家正在搜