电荷耦合元件的CCD的应用

如题所述

第1个回答  2016-05-31

近年来,CCD器件及其应用技术的研究取得了惊人的进展,特别是在图像传感和非接触测量领域的发展更为迅速。随着CCD技术和理论的不断发展,CCD技术应用的广度与深度必将越来越大。CCD是使用一种高感光度的半导体材料集成,它能够根据照射在其面上的光线产生相应的电荷信号,在通过模数转换器芯片转换成“0”或“1”的数字信号,这种数字信号经过压缩和程序排列后,可由闪速存储器或硬盘卡保存,可对被测物体进行准确的测量、分析。
CCD最常应用于数码相机、光学扫瞄仪与摄影机的感光元件。能捕捉到70%的入射光,优于传统菲林底片的2%,其优越的性能迅速获得天文学家的大量采用。
传真机所用的是线型CCD,传真机或扫瞄仪用的线性CCD每次捕捉一细长条的光影。一旦完成曝光的动作,控制电路会使电容单元上的电荷传到相邻的下一个单元,到达边缘最后一个单元时,电荷讯号传入放大器,转变成电位。如此周着复始,直到整个影像都转成电位,取样并数位化之后存入内存。储存的影像可以传送到打印机、储存设备或显示器。
数码相机或摄影机所用的是面型CCD,一次捕捉一整张影像,或从中撷取一块方形的区域。一般的彩色数码相机是将拜尔滤镜( Bayer filter )加装在CCD上。每四个像素形成一个单元,一个负责过滤红色、一个过滤蓝色,两个过滤绿色,但是效果一般。用三片CCD和分光棱镜组成的3CCD系统能将颜色分得更好,分光棱镜能把入射光分析成红、蓝、绿三种色光,由三片CCD各自负责色光的呈像。所有的专业级数位摄影机,和一部份的半专业级数位摄影机采用3CCD技术。目前,超高分辨率的CCD芯片仍相当昂贵,配备3CCD的高解析静态照相机,其价位往往超出许多专业摄影者的预算。因此有些高档相机使用旋转式色彩滤镜,兼顾高分辨率与忠实的色彩呈现。这类多次成像的照相机只能用于拍摄静态物品。
CCD同时也广泛应用于天文摄影与各种夜视装置,而各大型天文台亦不断研发高像素CCD以拍摄极高解像之天体照片。CCD能使固定式的望远镜发挥有如带追踪望远镜的功能。方法是让CCD上电荷读取和移动的方向与天体运行方向一致,速度也同步,以CCD导航不仅能使望远镜有效纠正追踪误差,还能使望远镜记录到比原来更大的视场。一般的CCD大多能感应红外线,所以衍生出红外线影像、夜视装置、零照度(或趋近零照度)摄影机/照相机等。因室温下的物体会有红外线的黑体辐射效应,天文用CCD常以液态氮或半导体冷却。

相似回答