第1个回答 2020-10-22
1多边形
1.1多边形
延长多边形的任意一条边,如果这个多边形的其他各边都在这些延长所得的直线的同旁,我们把这样的多边形叫做凸多边形
在多变形中,连结不相邻两个定点的线段叫做多边形的对角线
1.2多变形的内角和
多变形的内角和定理n边形的内角和等于(n-2)*180
多边形的外角和定理任意多边形的外角和等于360
2平行四边形
2.1平行四边形的定义和性质
两组对边分别平行的四边形叫做平行四边形
平行四边形性质定理1平行四边形的对边相等
平行四边形性质定理2平行四边形的对角相等
定理夹在两条平行线间的平行线段相等
同时垂直于两条平行线的直线叫做这两条平行线的公垂线,公垂线夹在平行线间的线段叫做公垂线段,两条平行线间公垂线短的长叫做这两条平行线间的距离
推论平行线间的距离处处相等
平行四边形性质定理3平行四边形对角线互相平分
2.2平行四边形的判定
平行四边形判定定理1两组对边分别相等的四边形是平行四边形
平行四边形判定定理2两组对角分别向等的四边形是平行四边形
平行四边形判定定理3对角线互相评分的四边形是平行四边形
平行四边形判定定理4一组对边平行且相等的四边形是平行四边形
2.3特殊的平行四边形
一个角是直角的平行四边形叫做矩形
矩形性质定理1矩形的四个角都是直角
矩形性质定理2矩形的对角线相等
矩形的判定定理1有三个角是直角的四边形是矩形
举行的判定定理2对角线相等的平行四边形是矩形
菱形的性质定理1菱形的四条边都相等
菱形的性质定理2菱形的对角线互相垂直,并且每条对角线平分一组对角
菱形的判定定理1四边都相等的四边形是菱形
菱形的判定定理2对角线互相垂直的平行四边形是菱形
正方形性质定理1正方形的四个角都是直角,四条边都相等
正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角