求不定积分

如题所述

第1个回答  2018-11-23

第2个回答  2018-11-24
设t=arctanx,x=tant,dx=sec²tdt
原积分=∫e^t.tant/sec³t.sec²tdt
=∫e^t.sintdt
=∫sintde^t
=e^t.sint-∫e^t.costdt
= e^t.sint-∫costde^t
= e^t.sint-e^t.cost十∫e^t.(-sint)dt
=e^t(sint-cost)-∫e^t.sintdt
2 ∫e^t.sintdt= e^t(sint-cost)
∫e^t.sintdt= e^t(sint-cost)/2
= e^t(sint/√2-cost/√2)/√2
=e^tsin(t-π/4)/√2
回代
原积分=
e^arctanxsin(arctanx-π/4)/√2十C本回答被网友采纳
相似回答